Phase transitions of a mixed spin ferrimagnet in high temperatures
Abstract
In this research paper molecular mean-field theory (MMFT) has been investigated based on Gibbs-Bogoliubov free energy function of a ferrimagnetics mixed spin-3 and spin-5/2 Blume-Capel model with different magnetic crystal fields. The free energy of the proposed ferrimagnet has been evaluated depending on the trial Hamiltonian operator. Minimizing the free energy, one may induce characteristic features of the longitudinal magnetizations, phase transitions and spin compensation temperatures, in the ranges of low temperatures, respectively. In particular, we study the effect of crystal field domains on the critical phenomena for the proposed model. The sublattice magnetization dependence of free energy function has been discussed as well. Our results predict the existence of multiple spin compensation sites in the disordered Blume-Capel Ising system for a simple cubic lattice.
References
2. R. Masrour, A. Jabar, J. Supercond. Nov. Magn., 30, 2, 2115(2017). https://doi.org/10.1007/s10948-017-4015-7
3. A. Feraoun , M. Kerouad, Appl. Physica A, 124, 735(2018). https://doi.org/10.1007/s00339-018-2157-5
4. E. Kantar, and M. Ertaş, Eur. Phys. J. Plus, 137, 5(2022)643. https://doi.org/10.1140/epjp/s13360-022-02871-9.
5. Mehmet Ertaş, Eur. Phys. J. Plus 137, 2(2022)178. https://doi.org/10.1140/epjp/s13360-022-02392-5.
6. C. A. Mercado,N. De La Espriella, L. C. Sánchez, Journal of Magnetism and Magnetic Materials 382(2015)288.
7. J. H. V. J. Brabers, V. H. M. Duijn, F. R. de Boer, J. Alloys and Compounds, 198(1993)127.
8. G. Venturini, B. Chafik, El Idrissi, E. Ressouche, B. Malaman, J. Alloys and Compounds, 216(1994)243.
9. M. Karimou, R.A. Yessoufou, G.D. Ngantso, F. Hontinfinde , A. Benyoussef, Journal of Superconductivity and Novel Magnetism, https://doi.org/10.1007/s10948-018-4876-4, 2018.
10. T. Kaneyoshi, M. Jascur, Physica A 195(1993)474.
11. A. Bobàk, phys. A, 258(1998)140.
12. T. Kaneyoshi, Y. Nakamura, S. Shin, J. phys. :Condens. Matter 10(1998)7025.
13. Yasuyuki Nakamura, phys.Rev.B,62,17(2000)11742 .
14. A. Ozkan, Phase Transitions; A multinational Journal, Ising model, 89:1, 94-105,DOI:10.1080/01411594.2015.1067702.
15. M. Godoy, V.S. Leite, W. Figueiredo, Phys. Rev. B,2004, 69, 054428.
16. R. Masrour, A. Jabar, L. Bahmad, M. Hamedoun, A. Benyoussef, J. Magn. Magn. Mater., Vol. 421(2017)76.
17. R. Masrour, A. Jabar, Superlattices and Microstructures, Vol. 109(2017)641.
18. B. Deviren, M. Keskin, O. Canko, Physica A, vol. 388( 2009)1835.
19. A. Dakhama, N. Benayad, J. Magn. Magn. Mater., vol. 213(2000) 117.
20. Hailing Miao, Guozhu Wei, Jiajia Geng, J. Magn. Magn. Mater.,vol.321( 2009) 4139.
21. Neel, L. Annls. Phys., 3, (1948)137.
22. S. Ferlay, T. Mallah, R. Ouahès, P. Veillet, M. Verdaguer, Nature. 378,(1995) 701. https://doi.org/10.1038/378701a0.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright © Author(s) retain the copyright of this article.

.