Anthocyanin extraction and purification
Abstract
Anthocyanins, found naturally in numerous plants like fruits and vegetables, anthocyanins offer important pharmacological advantages, making their extraction for medical purposes crucial endeavor. While conventional methods ordinarily use methanol for extraction, this often yields extracts contaminated with other components. Consequently, there is a essential for extraction techniques that provide greater anthocyanin purity. Our current study addresses this via employing a modified extraction technique using an acetone-chloroform system designed to produce an additional or more purified anthocyanin extract. This extraction approach achieved a high recovery percentage of 82.73 ± 1.96%. The research focused on two major anthocyanins-Peonidin-3-glucoside and Pelargonidin-3-glucoside-extracted from red onions and analyzed their spectral behavior. UV-Vis measurements revealed that the first compound peaked at the wavelength typical for peonidin derivatives, while the second matched the pelargonidin profile. When we introduced aluminum chloride, both pigments exhibited the expected bathochromic shifts, confirming our assignments. To isolate these molecules, we optimized an acetone–chloroform extraction procedure that consistently delivered fractions of high purity. Conclusion, this streamlined approach not only proves that specific anthocyanin can be efficiently recovered from red onion but also highlights their promise for applications in food science, nutraceuticals, and pharmaceutical formulations.
Downloads
References
2. Tena N., Martín J., Asuero AG.State of the art of anthocyanins: Antioxidant activity, sources, bioavailability, and therapeutic effect in human health. Antioxidants 2020;9(5), 451. https://doi.org/10.3390/antiox9050451
3. Alvarez-Suarez J M., Cuadrado C., Ballesteros I., Giampieri F., Buelga, CS.Novel approaches in anthocyanin research—Plant fortification and bioavailability issues. Trends in Food Science & Technology 2021,117: 92–105.
4. Zhao X., & Yuan, Z. Anthocyanins from pomegranate (Punica granatum L.) and their role in antioxidant capacities in vitro. Chemistry & Biodiversity 2021;18, e2100399.
5. Jiao X., Li B., Zhang Q., Gao N., Zhang X., Meng X., et al. Effect of in vitro-simulated gastrointestinal digestion on the stability and antioxidant activity of blueberry polyphenols and their cellular antioxidant activity towards HepG2 cells. International Journal of Food Science & Technology 2018;53(1), 61–71.
6. Pertuzatti PB., Barcia MT., Rebello LP.,Gómez-Alonso,GS., Duarte RMT., Duarte, MCT., et al. (2016). Antimicrobial activity and differentiation of antho-cyanin profiles of rabbiteye and highbush blueberries using HPLC-DAD-ESIMSn and multivariate analysis. Journal of Functional Foods 2016;26, 506–516.
7. Eroglu Ozkan E., Seyhan MF., Kurt Sirin O., Yilmaz-Ozden T., Ersoy E., Hatipoglu CakmarS. D., et al. Anti-proliferative effects of Turkish pomegranate (Punica granatum L.) extracts on MCF-7 human breast cancer cell lines with focus on antioxidant potential and bioactive compounds analyzed by LC-MS/MS. Journal of Food Biochemistry 2021;45(1), e13904.
8. Zhang P., Li Y., WangT., Cai Z., Cao H., Zhang H., Cao Y., Chen B., & Yang D. Statistics on the bioactive anthocyanin/proanthocyanin products in China online sales. Food Science & Nutrition 2021;9, 5428–5434.
9. Zielinska M., & Michalsk, A. (2016). Microwave-assisted drying of blueberry (Vaccinium corymbosum L.) fruits: Drying kinetics, polyphenols, anthocyanins, antioxidant capacity, colour and texture. Food Chemistry 2016;212, 671–680.
10. Bisen P S., & Emerald M. Nutritional and therapeutic potential of garlic and onion (Allium sp.). Current Nu-trition and Food Science2016; 12(6), 190–199. https:// https://doi.org/10.2174/1573401312666160608121954
11. Putnik P., Gabric D., Roohinejad S., Barba FJ., Granato D., Lorenzo JM., et al. (2019). Bioavailability and food production of organosulfur compounds from edible Allium species. In F. J. Barba, J. M. A. Saraiva, G. Cra-votto, J. M. B. Tenório, & N. T. P. Lorenzo (Eds.), Bioaccessibility and bioavailability of nutrients and bioactive compounds (pp. 293–308). Woodhead Publishing.
12. Mai NT, Dung D T, Nga TT,Xuan VT, DoanVV., & Tai, B. H., et al. (2020). Triterpenoid glycosides from the rhizomes of Allium ascalonicum and their anoctamin-1 inhibitory activity. Natural Product Research 2020;22:1–9. https://doi.org/10.1080/14786419.2020.1713122
13. Mobin L., Haq M A., Ali R., Naz S., & SaeedSG. Antibacterial and antioxidant potential of the phenolic extract and its fractions isolated from Allium ascalonicum (onion) peel. Natural Product Research 2022; 36: 12. 3163-3167. https://doi.org/10.1080/14786419.2021.1948040
14. Prakash, P., Radha, M., Kumar, N., Kumari, S., Prakash, S., & Rathour, M., et al. (2021). Therapeutic uses of wild plants by rural inhabitants of maraog region in District Shimla, Himachal Pradesh, India. Horticulturae, 7(10), 343. https://doi.org/10.3390/horticulturae7100343
15. Wahyuni S., Saati EA., Winarsih S., Susetyarini E., & RochmahTW. The combination of dragon fruits skin and teak leaves anthocyanin extract as soymilk’s natural dye. Iraqi Journal of Agricultural Sciences 2020;51:4, 1188–1194. https://doi.org/10.36103/ijas.v51i4.1097
16. Al-Abas MMA., & Nasser J M. Optimal conditions for extraction phenolic compounds and flavonoids from millet bran and studying some of their biological ac-tivity. Iraqi Journal of Agricultural Sci-ences2025;56(Special Issue), 57–67.
17. Ahmed MH., Omran ZS.& Oraibi AG. (2024). Increas-ing some flavonoids compounds for Echinacea pur-purea L. using copper oxide nanoparticles in vitro. Iraqi Journal of Agricultural Sciences2024;55(2), 733–743.
18. Sarah NL., & Zainab FM. Activity of Matricaria chamomilla crude and total flavonoid extracts as anti-virulence factor for clinically isolated Pseudomonas aeruginosa. Iraqi Journal of Agricultural Sciences 2023;54(1), 59–69. https://doi.org/10.36103/ijas.v54i1.1676
19. Abbas LMR., Hashim AJ., & Kadhim B J. Evaluation of Myrtus communis flavonoid as antidermatophytic and keratinase inhibitor. Iraqi Journal of Agricultural Sci-ences 2020;51(6), 1525–1533. https://doi.org/10.36103/ijas.v51i6.1180
20. Lin S., Zhang P., Deng Y., Xu A., Lu S., & Wu C., et al. Quantification and analysis of anthocyanin and fla-vonoids compositions, and antioxidant activities in onions with three different colors. International Jour-nal of Integrative Agriculture 2016;9(12), 2175–2181. https://doi.org/10.1016/S2095-3119(16)61385-0
21. Pazmino-Duran E A., Giusti M M., Wrolstad R E., & Gloria MBA. . Anthocyanins from banana bracts (Musa paradisiaca) as potential food colorants. Food Chemistry 2001;73, 327–332.
22. Harborne J B. Spectral methods of characterizing anthocyanins. Biochemical Journal 1985;70(1), 22–28. https://doi.org/10.1042/bj0700022
23. Herrera-Ramirez J., Meneses-Marentes N., & Tarazona Diaz M P. Optimizing the extraction of anthocyanins from purple passion fruit peel using response surface methodology. Journal of Food Measurement and Characterization 2020;14(1), 72–79.
24. Ramos VM., ViqueiraV., Luzi F., Dominici F., Terenzi A., Maron E., et al. Anthocyanin hybrid nanopigments from pomegranate waste: Colour, thermomechanical stability and environmental impact of polyester-based bionanocomposites. Polymers 2021;13(12), 1966. https://doi.org/10.3390/polym13121966
25. Wrolstad RE. Anthocyanin pigments. In R. E. Wrol-stad, T. E. Acree, E. A. Decker, M. H. Penner, D. S. Reid, S. J. Schwartz, C. F. Shoemaker, D. M. Smith, & P. Sporns (Eds.), Handbook of food analytical chemistry (pp.1 883–921). John Wiley & Sons;2004.
26. BitwellC., Indra S S., Luke C., & Kakoma M K. A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. Scientific African 2023;19, e01585. https://doi.org/10.1016/j.sciaf.2023.e01585
27. Prior RL., Wu X., & Schaich K M.Standardized methods for the determination of total antioxidant capacity and phenolic compounds in foods and dietary supplements. Journal of Agricultural and Food Chemistry 2005;53(10), 4290–4302. https://doi.org/10.1021/jf0502698
28. Castañeda-Ovando A., Pacheco-Hernández ML., Páez-Hernández M E., & Rodríguez JA. Chemical studies of anthocyanins: A review. Food Chemistry 2009;113(4), 859–871. https://doi.org/10.1016/j.foodchem.2008.09.001
29. Wrolstad RE., Acree TE., Decker EA., Penner M. H., Reid D S., Schwartz SJ., ShoemakerCF., Smith D., & Sporns P. (Eds).Handbook of food analytical chemistry (Vol. 2). John Wiley & Sons;2004.
30. Solovchenko A E., Chivkunova OB., MerzlyakMN., & Reshetnikova IV. A spectrophotometric analysis of pigments in apples. Russian Journal of Plant Physiol-ogy 2001;48: 693–700. https://doi.org/10.1023/A:1016780624280.
31. Samota M.K, Sharma,M., 2, Kaur,K., Sarita , Yadav DK., Abhay K P. et al.. Onion anthocyanins: Extraction, stability, bioavailability, dietary effect, and health implications . Front. Nutr 2022, (9) :1-20. https://www.frontiersin.org/journals/nutrition/articles/10.3389/fnut.2022.917617/full#:~:text=https%3A//doi.org/10.3389/fnut.2022.917617 .
32. Gonzalez-de-Peredo AV., Vazquez-Espinosa M., Es-pada-Bellido E., Ferreiro-Gonzalez M., Carrera C., & Barbero GF., et al. Development of optimized ultra-sound-assisted extraction methods for the recovery of total phenolic compounds and anthocyanins from onion bulbs. Antioxidants 2021;10(11), 1755. https://doi.org/10.3390/antiox10111755
33. Park M J., Ryu DH., Cho JY., Ha I J., Moon J S., & Kang Y H., et al. (2018). Comparison of the antioxidant properties and flavonols in various parts of Korean red onions by multivariate data analysis. Horticulture, Environment, and Biotechnology 2018;59(6), 919–927. https://doi.org/10.1007/s13580-018-0091-2
34. Oancea S., Radu M., & Olosutean H. Development of ultrasonic extracts with strong antioxidant properties from red onion wastes. Romanian Biotechnological Letters 2020;25(2), 1320–1327.1https://doi.org/10.25083/rbl/25.2/1320.1327
35. Harborne JB. Spectral methods of characterizing anthocyanins. Biochem J.1958;.70(1):22-8. doi: 10.1042/bj0700022. PMID: 13584295; PMCID: PMC1196618.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright © Author(s) retain the copyright of this article.

.