FORMULATION, DESIGN, AND EVALUATION OF VALSARTAN SODIUM-SUSTAINED-RELEASE MATRIX TABLETS

P. Sai Sravanthi1, G. Hima Bindu1, K. Umasankar1, M. Kishore Babu1
1Department of Pharmaceutics, Krishna Teja Pharmacy College, Chadalawada Nagar, Tirupati, Andhra Pradesh-517506

Abstract

Developing and evaluating sustain release matrix tablets of valsartan, a type 1 antagonist for the angiotensin II receptor, was the principal objective of this study. For a long period, the active components of pharmaceuticals in sustained-release forms are released topically or intravenously at regular intervals. A combination of various release retardant polymers, chitosan, and sodium alginate concentrations were used in the direct compression technique to create the matrix tablet. Before compression, the powder mixtures were evaluated for bulk density, angle of repose, and Carr’s index. After compression, the compressed tablets were evaluated for weight variation, thickness, hardness, friability, drug content, in-vitro dissolution, and stability, among other post-compression parameters. The outcomes met expectations. According to in-vitro dissolve trials carried out for 24 hours using pH 6.8 phosphate buffers for the last 24 hours and 0.1N HCl for the first 2 hours, formulations F4 and F7 showed an effective dissolving profile for drug release control. Polymers, along with an increased concentration of chitosan and sodium alginate, were among the substances used to create a twenty-four-hour sustained-release formulation. The drug’s compatibility with the polymers and other excipients was determined using Fourier Transform Infrared Spectroscopy. Polymers were among the excipients with which the medication was found to be compatible. Mathematical models such as Zero-order, First-order, the Higuchi equation, and the Korsmeyer-Peppas model were used to fit the release data in order to evaluate the kinetics and drug release. The drug release was first-order, and the mechanism was found to be non-Fickian. The two selected formulations, F4 and F7, were shown to be stable after three months of testing.

Keywords: Antihypertensive, Carbopol 934P, Chitosan, Sodium alginate, Sustain release matrix tablet, Valsartan.

Introduction

Oral administration is preferred because it offers more dosage form, formulation, and patient adherence flexibility. In this scenario, one must consider the varied pH levels the dosage form will experience throughout transit, the gastrointestinal tract’s motility, and the enzyme system’s effect on the drug and dosage form. Most sustained release systems for oral drugs use dissolution, diffusion, or both to release the drug slowly into the gastrointestinal tract [1-3]. A sustained release delivery system should distribute the drug through a zero-order method, creating a blood level time profile similar to intravenous constant rate infusion. Plasma drug concentration profiles for conventional tablet or capsule, sustained release, and zero order sustained release formulations [4-8]. Any treatment that slowly releases the medication is sustained release. The system can provide excellent treatment control in duration, location, or both. Sustained release systems mimic zero-order release by slowly releasing the drug in a first-order pattern. Repeat action pills are sustained-release medications with multiple dosages. Regular doses are given [9]. Matrix tablets use dissolving and diffusion to continuously release medicine. Drugs with different solubility are dispersed within hydrophilic components that may expand or an insoluble matrix comprised of stiff hydrophobic or plastic materials to govern their release. Compressing a combination of drug release, retardant material, and additives into a tablet with the medicine imbedded in the release retardant is a simple and precise way to make sustained release dosage forms. Pulverizing
the drug and releasing retardant before compression is another option [10]. The goal of this work was to create Valsartan sustain-release matrix tablets by mixing release retardant polymers with chitosan and sodium alginate cross-linking agents of various concentrations. Valsartan stimulates aldosterone production and narrows blood capillaries to decrease blood pressure [11-14]. It treats congestive heart failure and lowers death rates in left ventricular dysfunction following a myocardial infarction. Due to its short half-life of 5-6.5 hours and frequent dosage, Valsartan was considered for sustained-release matrix tablets.Tabs are safe, cost-effective, and convenient, improving patient adherence [15-18]. This medication's shorter half-life makes it excellent for sustain-release tablets [19-20].

Materials and Methods
The pure Valsartan was obtained as a gift sample from Yarrow Chem Products, Mumbai.Carbopol 934P, Chitosan, Sodium alginate and polyvinylpyrrolidone K30 were obtained from S.D fine chem. limited, Mumbai.

Preparation of sustain release matrix tablets by direct compression method
The straight compression method was used to make the valsartan matrix pills. The right amounts of drug and excipients were weighed out and mixed together correctly. The matrix pills were then made by directly compressing them with a punched machine 21–23. Valsartan 80 mg is in each pill. All seven Formulations designs (F1–F7) are shown in Table 1.

Preparation of initial drug solution
To make the initial stock solution, 100 mg of valsartan was precisely weighed and diluted in 100 ml of 0.1 N NaOH. To make II stock solution, 10 ml of the aforesaid solution were obtained and diluted to 100 ml using the same solvent. The stock solution II aliquot quantity was further diluted with 0.1 N NaOH to provide the following drug concentrations per ml of the final solution: 5µg, 10µg, 15µg, 20µg, 25µg, and 30µg. The absorbance was then measured at 249 nm in a UV spectrophotometer using 0.1 N NaOH as a blank. The absorbance vs. concentration curve was drawn on lines 24–25.

Compatibility study using FT-IR
The careful selection of excipients that are included to aid administration and support the constant release and bioavailability of the medication while preventing degradation is essential for the successful formulation of a stable and effective solid dosage form. Using a Thermo Nicolet FTIR, infrared spectroscopy was performed, and the spectrum was obtained between 4000 and 400 cm–1. Through the observation of any change in the drug’s peaks in the spectrum of the physical combination of drug, the interaction between the drug and the excipients was seen via IR-spectral investigations. 100mg of potassium bromide (dried at 40–50oC) was combined with 3 mg of the medication, which had been weighed. To create a dear pellet, the mixture was collected and crushed in a hydraulic press at a pressure of 10 tons. The IR spectrophotometer scanned the particle. The process is the same for all pertinent excipients used [26].

Pre-formulation parameters
Melting point
The capillary technique was used in triplicate to determine the drug’s melting point [27].

Determination of angle of repose
Powder (mix blend) in measured amounts was poured onto the graph paper via the funnel at a predetermined height. The heap's height was measured. Pencil was used to outline the heap's circumference. The angle of repose was then computed using the parameter “r," which was determined from the area of the circle 28–30 and the area of the created circle was computed using the big and small squares that are present within the circle.

\[
\tan \theta = \frac{H}{r} \quad \text{Equation 1}
\]

Where, \(\theta \) = the angle of repose, \(H \) = height of the heap of the powder, and \(r \) = radius of the heap of the powder.

Determination of Bulk Density and Tapped Density
A 100 ml measuring cylinder containing 20g of the blended mixture (W) was filled, and the starting volume was noted. At intervals of two seconds, the cylinder was permitted to drop from a height of 2.5 cm onto a hard surface under its own weight. The tapping was kept up till the loudness didn’t change any more [31–32]. The following formulas were used to compute the bulk density and the tapped density.

\[
\text{Bulk Density} = \frac{W}{V_{o}} \quad \text{Equation 2}
\]

\[
\text{Tapped Density} = \frac{W}{V_{f}} \quad \text{Equation 3}
\]

Where, \(W \) = Weight of the powder mixture, \(V_{o} \) = Initial volume of the powder mixture \(V_{f} \) = Final volume of the powder mixture.

Carr’s compressibility Index (CI)
One significant metric that may be derived from the bulk and tapped densities is the compressibility index. Theoretically, a material has greater flow ability the less
compressible it is. A material with excellent flow property has values less than 20%.

\[CI = \frac{TD - BD}{TD} \times 100 \]
Equation 4

Hausner’s Ratio

It is determined by the ratio of the tapped density to the bulk density and shows the granules’ flow characteristics.

\[\text{Hausner's Ratio} = \frac{\text{Tapped density}}{\text{Bulk density}} \]
Equation 5

Post-Compression Evaluation Parameters

The drug content uniformity, weight fluctuation, tablet hardness, friability, thickness, and in-vitro drug release using diverse media were among the assessment criteria that were applied to the tablets.

Weight variation

Every time a tablet was being manufactured, its weight was measured to make sure the right quantity of medication was inside. To perform the USP weight variation test, each of the twenty tablets is weighed separately. The average weight is then determined and the individual weights are compared to the average. The tablets satisfied the USP requirement that no tablet vary by more than twice the percentage restriction and that no more than two tablets be outside the percentage limits.

Table 1 displays the official percentage departure of tablets from USP limits.

<table>
<thead>
<tr>
<th>Average weight of tablet (mg)</th>
<th>% Difference Accepted</th>
</tr>
</thead>
<tbody>
<tr>
<td><130</td>
<td>±10</td>
</tr>
<tr>
<td>130-324</td>
<td>±7.5</td>
</tr>
<tr>
<td>>324</td>
<td>±5</td>
</tr>
</tbody>
</table>

Tablet hardness

The hardness of a tablet determines how resistant it is to breaking or shipment during handling, storage, and transit prior to use. The Monsanto hardness tester was used to measure the hardness of each batch of tablets. The kg/cm2 unit of measurement for hardness was used. Five pills were selected at random and their hardness evaluated. A total of five determinations average hardness was [39].

Friability

In general, friability refers to the weight of the tablets in the containers decreasing as a result of the particles being removed from the tablet surface. Poor tablet ingredient consistency. Vernier callipers were used to measure thickness. Ten tablets from each formulation batch were checked for thickness in order to make this determination.

Drug content uniformity

From each batch, ten tablets were weighed, and the average weight was determined. All of the pills were broken up, and 80 mg of medication powder was dissolved in pH 6.8 phosphate buffer to create a volume of 100 ml. A 10 ml volumetric flask containing 1 ml of the stock solution was filled with pH 6.8 phosphate buffers. After filtering the solution, absorbance was measured spectrophotometric at 249 nm using phosphate buffer with a pH of 6.8 as a blank. The amount of medication in a single pill was determined [41].

In-vitro dissolution studies

Dissolution tests were done in-vitro utilizing the USP-II (Paddle) dissolution equipment at 50 rpm. The dissolution medium consisted of 0.1N HCl for 2 hours and phosphate buffer pH 6.8 for the remaining hours, at a temperature of 37±0.50 at regular intervals, 5 ml was removed and replaced with new medium. The removed samples were diluted with pH 6.8, filtered, and UV spectrophotometer analysed at 249 nm using pH 6.8 as a blank. Calculated cumulative drug release percentage.

Mathematical modelling of drug release profile

By examining the release data using zero order, first order kinetics, and the Higuchi equation, the drug release from the Valsartan sustain release matrix tablets was investigated. Korsmeyer Peppas model was used to fit the data in order to understand the release process.

Zero order kinetics: If the cumulative percentage of drug release is plotted against time and the plot is linear, the data follows zero order release kinetics and has a slope of K0. The following equation would predict a zero order release:

\[At= A0 - K0 t \]
Equation 7

At= Drug release at time t
A0=Initial drug concentration.
K0=Zero-order rate constant (hr⁻¹)

First order Kinetics

A straight line is produced when the data is shown as log cumulative percent of medication remaining vs time, suggesting that first order kinetics govern the release. You may get the constant “k” by multiplying the slope values by 2.303. The following equation might be used to forecast first order release:

\[\log C = \log C0 - Kt/2.303 \]
Equation 8

C=Amount of drug remained at time t
C0 = Initial concentration of drug.
K=First-order rate constant (hr⁻¹).

Higuchi’s model

A straight line results from plotting the data as cumulative drug release vs. square root of time, suggesting that the medication was released by a diffusion process. The slope (Higuchi’s 1963) equals K. Higuchi’s classical diffusion equation has been used to explain drug release from the formulation by diffusion.

\[
Q = \frac{D\varepsilon}{(2A-\varepsilon CS)C^S} \left(\frac{1}{2}\right)
\]

Equation 9

\(Q=\) Amount of drug released at time t

\(D=\) Diffusion coefficient of the drug in the matrix. \(A =\) Total amount of drug in unit volume of matrix. \(C_S=\) Solubility of the drug in the matrix.

\(\varepsilon=\) Porosity of the matrix.

\(t=\) Tortuosity.

Korsmeyer-Peppa’s model

When the data is plotted as log of drug released versus time, yields a straight line with a slope equal to “n” and the “K” can be obtained from y-intercept. To study the mechanism of drug release, the release data were also fitted to the well-known exponential equation (Korsmeyer-Peppa’s law equation), which is often used to describe the drug release behaviour from polymeric systems.

\[
\frac{M_t}{M_a} = K t^n
\]

Equation 10

\(\frac{M_t}{M_a}=\) fraction of drug released at time t

\(K=\) Constant incorporating the structural and geometrical characteristics of the drug/polymer.

\(n=\) Diffusion exponent related to the mechanism of the release.

Above equation can be simplified by applying log on both sides,

\[
\log \frac{M_t}{M_a} = \log K + n \log t
\]

Equation 11

Stability studies

In accordance with ICH requirements, a three-month stability study was conducted on the chosen formulations. The chosen formulas were put into glass bottles with a large opening, sealed securely with aluminium foil, and sealed. Stability tests for the chosen formulations were conducted in the current research for a specified duration of three months at 25°C/60% and 40°C/75% RH42–43.

Results and Discussion

Determination of \(\lambda\) max of Valsartan: The \(\lambda\) max of the Valsartan was found to be 249nm in 0.1 N NaOH.

Calibration curve

In a UV spectrophotometer, the absorbance of valsartan was measured at 249 nm using 0.1 N NaOH as a blank. Plotting absorbance vs. concentration produced the graph (Figure 1).

![Calibration graph of Valsartan in 0.1N NaOH](image)

Compatibility studies using FT-IR

The drug and polymer combination spectra showed all of the distinctive peaks of valsartan, showing compatibility between the two substances. Based on the findings, it was determined that the functional group was not interfering, as the main peaks of valsartan were shown to remain unchanged in the drug-polymer physical combinations, suggesting their chemical compatibility. The drug’s chemical integrity has not changed much, according to the spectrum. Values for interpretation as well as every spectrum shown in figures 2–5 and Table 3.

Table 3: Interpretations of FTIR-spectrum

<table>
<thead>
<tr>
<th>Composition</th>
<th>Functional groups with wave number (cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N-H(s) N-O(b) C-H(b) C-O(s) O-H(b)</td>
</tr>
<tr>
<td>Valsartan</td>
<td>1652.13 1559.62 1428.42 1282.02 845.02</td>
</tr>
<tr>
<td>Valsartan-Chitosan</td>
<td>1551.92 1389.82 1274.16 896.12</td>
</tr>
<tr>
<td>Valsartan-Sodium alginate</td>
<td>1644.21 1551.62 1397.42 1274.16 857.32</td>
</tr>
<tr>
<td>Valsartan-Carbopol</td>
<td>1551.12 1397.21 1274.16 857.12</td>
</tr>
<tr>
<td>Valsartan-Physical mixture</td>
<td>1706.15 1551.12 1388.72 1274.16 865.12</td>
</tr>
</tbody>
</table>
Evaluation of powder blended characteristics
For each type of formulation, blends of Valsartan and other excipients were prepared and evaluated for various parameters such as bulk density, tapped density, Carr’s compressibility index, Hausner’s ratio, and angle of repose. Bulk density was found in the range of 0.355-0.385 g/cm³ and the tapped density between 0.4101-0.4880 g/cm³ indicating both parameters were found to
be within the limits. Using the above two density data, Carr’s compressibility index were calculated. The compressibility index and Hausner’s ratio was found in the range of 7.27-18.42% and 1.053-1.24 respectively indicating that all powder blends showed excellent to acceptable flow properties. The flow property of all powder blends was better explained from angle of repose. The angle of repose was found in the range of 25.33-31.43°. The results of angle of repose showed all powder blends exhibited good to acceptable flow property. The results of pre-compression parameters are shown in table 4.

Table 4: Evaluation parameters of pre-formulation characteristics of powder blend

<table>
<thead>
<tr>
<th>Formulations Number</th>
<th>Bulk Density (gm/cc)</th>
<th>Tapped Density (gm/cc)</th>
<th>Carr’s Index (%)</th>
<th>Hausner’s Ratio</th>
<th>Angle of Repose (θ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>0.3716±0.0011</td>
<td>0.4101±0.0025</td>
<td>7.27±0.659</td>
<td>1.177±0.0076</td>
<td>29.7 ± 30.41</td>
</tr>
<tr>
<td>F2</td>
<td>0.3803±0.0005</td>
<td>0.4120±0.0026</td>
<td>7.58±0.514</td>
<td>1.053±0.0060</td>
<td>25.3 ± 30.63</td>
</tr>
<tr>
<td>F3</td>
<td>0.3843±0.0015</td>
<td>0.4120±0.005</td>
<td>7.43±0.760</td>
<td>1.059±0.0088</td>
<td>28.4 ± 40.35</td>
</tr>
<tr>
<td>F4</td>
<td>0.376±0.0020</td>
<td>0.4270±0.0037</td>
<td>13.78±0.386</td>
<td>1.073±0.0053</td>
<td>27.4 ± 80.52</td>
</tr>
<tr>
<td>F5</td>
<td>0.355±0.0017</td>
<td>0.4600±0.0024</td>
<td>17.31±0.794</td>
<td>1.224±0.011</td>
<td>31.3 ± 40.13</td>
</tr>
<tr>
<td>F6</td>
<td>0.3810±0.0045</td>
<td>0.4880±0.0065</td>
<td>18.42±0.120</td>
<td>1.24±0.0020</td>
<td>28.2 ± 60.43</td>
</tr>
<tr>
<td>F7</td>
<td>0.3850±0.0081</td>
<td>0.4384±0.133</td>
<td>10.88±0.030</td>
<td>1.123±0.0021</td>
<td>27.27 ± 0.42</td>
</tr>
</tbody>
</table>

Physical evaluation of tablets

After compression various quality control tests were carried out, which demonstrated following organoleptic properties viz. colour, odour and shape. All formulations (F1 to F7) were found to be white in colour, odourless and concave round flat with break-line on one side.

Table 5: Post-compression parameters results

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Diameter (mm)±SD</th>
<th>Thickness (mm)±SD</th>
<th>Weightvariation (mg)</th>
<th>Hardness (kg/cm²)</th>
<th>Friability (%)</th>
<th>Drugcontent (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>7.82±0.012</td>
<td>3.9±0.09</td>
<td>250.89±0.12</td>
<td>7.3±0.04</td>
<td>0.61±0.007</td>
<td>98.25±0.044</td>
</tr>
<tr>
<td>F2</td>
<td>7.80±0.002</td>
<td>4.0±0.02</td>
<td>253.88±0.60</td>
<td>7.8±0.03</td>
<td>0.52±0.005</td>
<td>100.31±0.037</td>
</tr>
<tr>
<td>F3</td>
<td>7.85±0.007</td>
<td>4.2±0.01</td>
<td>251.12±0.52</td>
<td>8.0±0.07</td>
<td>0.58±0.031</td>
<td>98.54±0.07</td>
</tr>
<tr>
<td>F4</td>
<td>7.84±0.022</td>
<td>3.9±0.07</td>
<td>249.81±0.13</td>
<td>6.5±0.04</td>
<td>0.72±0.016</td>
<td>99.67±0.087</td>
</tr>
<tr>
<td>F5</td>
<td>8.0±0.015</td>
<td>4.0±0.04</td>
<td>250.80±0.32</td>
<td>6.8±0.08</td>
<td>0.665±0.09</td>
<td>99.37±0.058</td>
</tr>
<tr>
<td>F6</td>
<td>7.94±0.010</td>
<td>3.8±0.09</td>
<td>248.92±0.44</td>
<td>7.1±0.03</td>
<td>0.71±0.014</td>
<td>98.97±0.073</td>
</tr>
<tr>
<td>F7</td>
<td>7.97±0.016</td>
<td>4.1±0.01</td>
<td>252.61±0.60</td>
<td>6.0±0.05</td>
<td>0.447±0.00</td>
<td>101.61±0.08</td>
</tr>
</tbody>
</table>

Discussion about the physical parameters

Thickness of tablets

All the formulations were evaluated for their thickness using “Vernier calipers” as per procedure in methodology section 4 and the results are shown in table 5. The average thickness for all the formulations was found in the range of 3.8-4.2 mm which is within the allowed limit of deviation i.e. 5% of the standard value. Also the crown diameter of all the tablet formulation was in the range of 8.0-7.8 mm.

Hardness

Tablet hardness is one of the critical parameter to evaluate the resistance of tablets to capping, abrasion or breakage under conditions of storage, transportation and handling before its administration. All the controlled release matrix tablet formulations of Valsartan were evaluated for their hardness as per procedure in methodology section 4 and the results were
dissipated in table 5. Hardness test was performed by Monsanto hardness tester. All the formulations have an average hardness in between 6.0 to 8.0 kg/cm². This ensures good handling characteristics of all formulation batches.

Friability

Friability is determined to evaluate the ability of the tablets to withstand abrasion in packing, handling and transporting. Friability of prepared tablets was determined by using “Roche friabilator”. The entire controlled release matrix tablet formulations were evaluated for their percentage friability and the results are shown in table 5. The average percentage friability for all the formulations was found in between 0.447% to 0.72%, which is found within the pharmacopoeial limit (i.e. less than 1%). So the maximum friability was 0.72% observed for F4 and the minimum friability 0.447% observed for F7.

Weight variation test

As the powder material was free-flowing, tablets obtained were uniform in weight due to uniform die fill with acceptable variation as per IP standards. The weight variation for all formulations was found in the range of 249.92 to 253.88 mg and results were dissipated in table 5. All the formulated tablets passed weight variation test as the % weight variation was within the pharmacopoeial limits (<5%). The weights of all the tablets were found to be uniform with low standard deviation values.

Drug content

The percentage of the drug content for formulation F1 to F7 was found to be between 98.25%w/w and 101.61%w/w. It complies with official specifications. The results were shown in table 5.

In-vitro drug release study

In this study carbopol was chosen as polymer and it was combined with chitosan and sodium alginate to explore their sustain release capability. The in-vitro release data for chitosan-carbopol and sodiumalginate-carbopol based Valsartan sustain released matrix tablets are represented in table 6 and illustrated in figure 7. The in-vitro release of Valsartan, from prepared matrix tablets formulations was mainly affected by dissolution medium, concentration of chitosan, concentration of sodium alginate and concentration of polymers. The in-vitro release of Valsartan form prepared matrix tablets also depends on swelling behavior of the tablets, higher the tablet swells comparatively the lesser amount of drug release. The in-vitro release study was performed in 0.1 N HCl for initial first 2 hrs, and then the medium was replaced by phosphate buffer pH 6.8) and study was continued for 24 hour. The in-vitro release of Valsartan was higher in first 6-7 hours in all formulations. After 1 hour, approximately10.29%~ 18.34% of Valsartan from chitosan-carbopol tablets, 16.90%~21.91% from sodium alginate-carbopol, 25.12% from tablets containing only release retardant polymer has been released. Initially amount of drug release was higher but after 6-7 hrs drug release was retarded. Formulation F1 do not contains any crosslinking agent, so almost all drugs was released at the end of 12 hrs. Formulation F2, F3, F4, and F7 containing lower concentration of chitosan and sodium alginate showed almost alldrug release within 16 hrs, 20 hrs, 16 hrs and 18 hrs respectively. Thus these formulations were not considered as good formulation as the maximum amount of drug was released before desire period of time i.e.24 hrs. The ionic interaction between crosslinking agents and negatively charged polymers was greatly reduced at this pH 6.8 and forms a loose network with increase porous surface which allows great part of dissolution media. Formulation F1 and F7 containing highest concentration of chitosan and sodium alginate respectively along with carbopol gum respectively prolong the release of Valsartan to 24 hrs which might be due to the fact that the self-assembled poly electrolyte complexes film was formed on the surface of cross linking agent-polymer based system. Swelling study also showed that formulation which contains higher concentration of cross linking agent showed higher swelling capacity and prolonged the drug release to 24 hrs.

Table 6: In-vitro drug release profile of Valsartan sustain release matrix tablets

<table>
<thead>
<tr>
<th>Time (Hrs)</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
<th>F6</th>
<th>F7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16.90±0.85</td>
<td>93.39±0.14</td>
<td>77.96±0.33</td>
<td>94.54±0.48</td>
<td>99.77±0.11</td>
<td>99.78±0.48</td>
<td>99.78±0.48</td>
</tr>
<tr>
<td>1</td>
<td>9.99±0.61</td>
<td>94.54±0.48</td>
<td>99.77±0.11</td>
<td>99.78±0.48</td>
<td>101.61%</td>
<td>101.61%</td>
<td>101.61%</td>
</tr>
<tr>
<td>2</td>
<td>99.99±0.59</td>
<td>94.54±0.48</td>
<td>92.23±0.48</td>
<td>86.24±0.76</td>
<td>82.67±0.48</td>
<td>82.67±0.48</td>
<td>82.67±0.48</td>
</tr>
<tr>
<td>3</td>
<td>90.88±0.59</td>
<td>94.54±0.48</td>
<td>92.23±0.48</td>
<td>86.24±0.76</td>
<td>82.67±0.48</td>
<td>82.67±0.48</td>
<td>82.67±0.48</td>
</tr>
<tr>
<td>4</td>
<td>93.39±0.14</td>
<td>94.54±0.48</td>
<td>92.23±0.48</td>
<td>86.24±0.76</td>
<td>82.67±0.48</td>
<td>82.67±0.48</td>
<td>82.67±0.48</td>
</tr>
<tr>
<td>5</td>
<td>99.77±0.11</td>
<td>99.78±0.48</td>
<td>99.78±0.48</td>
<td>99.78±0.48</td>
<td>99.78±0.48</td>
<td>99.78±0.48</td>
<td>99.78±0.48</td>
</tr>
<tr>
<td>6</td>
<td>99.78±0.48</td>
<td>99.78±0.48</td>
<td>99.78±0.48</td>
<td>99.78±0.48</td>
<td>99.78±0.48</td>
<td>99.78±0.48</td>
<td>99.78±0.48</td>
</tr>
<tr>
<td>7</td>
<td>99.78±0.48</td>
<td>99.78±0.48</td>
<td>99.78±0.48</td>
<td>99.78±0.48</td>
<td>99.78±0.48</td>
<td>99.78±0.48</td>
<td>99.78±0.48</td>
</tr>
</tbody>
</table>
Release kinetic studies

The in-vitro drug release data of all formulations were analysed for determining kinetics of drug release. The obtained data were fitted to zero order kinetics, first order kinetics and Higuchi model. The highest correlation coefficient (r^2) obtained from these methods gives an idea about the model best fitted to the release data. From the results of kinetic studies, the examination of correlation coefficient r indicated that the drug release followed first order release kinetics. It was found that the value of r^2 for first order ranged from 0.981-0.992, which is near to 1 when compared to Higuchi square root ranged from 0.892-0.958 and zero order ranged from 0.895-0.969. So, it was understood to be following first order release pattern followed by all formulations. Further, to understand the drug release mechanism, the data were fitted into Korsmeyer Peppas exponential model $M_t / M_\infty = Kt^n$. Where M_t / M_∞ is the fraction of drug released after time ‘t’ and ‘k’ is kinetic constant and ‘n’ release exponent which characterizes the drug transport mechanism. The release exponent (n) ranges in between 0.483-0.791. For all the formulations F_1 to F_7 the values for ‘n’ ranged above 0.89 which indicates that all the formulations followed non-Fickian release mechanism represented in table 7 and figure 8-11. The relative complexity of the prepared formulations may indicate that the drug release mechanism was possibly controlled by the combination of diffusion and erosion.

<table>
<thead>
<tr>
<th>Batch</th>
<th>Zero order</th>
<th>First order</th>
<th>Higuchi's plots</th>
<th>Korsmeyer-Peppas plots</th>
<th>Best fit Model</th>
<th>Drug release mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R^2</td>
<td>R^2</td>
<td>R^2</td>
<td>R^2</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>F_1</td>
<td>0.9293</td>
<td>0.982</td>
<td>0.9116</td>
<td>0.912</td>
<td>0.597</td>
<td>First order</td>
</tr>
<tr>
<td>F_2</td>
<td>0.969</td>
<td>0.974</td>
<td>0.8944</td>
<td>0.915</td>
<td>0.594</td>
<td>First order</td>
</tr>
<tr>
<td>F_3</td>
<td>0.916</td>
<td>0.984</td>
<td>0.9217</td>
<td>0.899</td>
<td>0.6077</td>
<td>First order</td>
</tr>
<tr>
<td>F_4</td>
<td>0.946</td>
<td>0.978</td>
<td>0.8926</td>
<td>0.892</td>
<td>0.577</td>
<td>First order</td>
</tr>
<tr>
<td>F_5</td>
<td>0.944</td>
<td>0.992</td>
<td>0.9581</td>
<td>0.902</td>
<td>0.488</td>
<td>First order</td>
</tr>
<tr>
<td>F_6</td>
<td>0.895</td>
<td>0.958</td>
<td>0.9022</td>
<td>0.929</td>
<td>0.7911</td>
<td>First order</td>
</tr>
<tr>
<td>F_7</td>
<td>0.896</td>
<td>0.981</td>
<td>0.9258</td>
<td>0.938</td>
<td>0.4838</td>
<td>First order</td>
</tr>
</tbody>
</table>
Figure 8: Comparative Zero Order release profile of formulations F₁ to F₇

Figure 9: Comparative First Order release profile of formulations F₁ to F₇

Figure 10: Comparative Higuchi release profile of formulations F₁ to F₇
Stability studies
Two best formulations, F4 and F7, were chosen for three-month stability investigations at 25°C/60% RH and 45°C/75% RH based on in-vitro drug release data. The stability investigations followed section four's procedure. The chosen formulations were assessed for appearance, hardness, friability, drug content, and in-vitro drug release. The investigation found no significant changes in physical appearance, hardness, friability, drug content, or drug release profile. Drug degradation was negligible after three months of stability trials. Thus, compositions were chemically and physically stable. Table 8-9 and Figure 12-13 show stability study results.

Table 8: Results of stability studies for formulation F4 stored at 25°C/60%RH and 45°C/75% RH

<table>
<thead>
<tr>
<th>Storage period</th>
<th>Stored at 25°C/60%RH</th>
<th>Stored at 45°C/75%RH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Formulation F4</td>
<td>Formulation F4</td>
</tr>
<tr>
<td></td>
<td>Hardness Kg/cm²</td>
<td>% friability</td>
</tr>
<tr>
<td>Initial</td>
<td>8.1±0.07</td>
<td>0.57±0.1</td>
</tr>
<tr>
<td>1 month</td>
<td>7.89±0.12</td>
<td>0.61±0.3</td>
</tr>
<tr>
<td>2 month</td>
<td>7.89±0.46</td>
<td>0.66±0.2</td>
</tr>
<tr>
<td>3 month</td>
<td>7.57±0.13</td>
<td>0.63±0.1</td>
</tr>
</tbody>
</table>

Table 9: Results of stability studies for formulation F7 stored at 25°C/60%RH and 45°C/75% RH

<table>
<thead>
<tr>
<th>Storage period</th>
<th>Stored at 25°C/60%RH</th>
<th>Stored at 45°C/75% RH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Formulation F7</td>
<td>Formulation F7</td>
</tr>
<tr>
<td></td>
<td>Hardness Kg/cm²</td>
<td>% friability</td>
</tr>
<tr>
<td>Initial</td>
<td>6.48±0.16</td>
<td>0.55±0.3</td>
</tr>
<tr>
<td>1 month</td>
<td>6.44±0.16</td>
<td>0.57±0.4</td>
</tr>
<tr>
<td>2 month</td>
<td>6.38±0.19</td>
<td>0.64±0.5</td>
</tr>
<tr>
<td>3 month</td>
<td>6.32±0.16</td>
<td>0.64±0.4</td>
</tr>
</tbody>
</table>
Conclusion
Angle of repose, bulk density, tapped density Hauser’s ratio, and Carr’s index of all formulations were within limits. No chemical interaction between medication and excipients was found in FTIR investigations. The powder mixes were crushed into tablets and tested for weight fluctuation, thickness, hardness, friability, and drug content. All formulation batches performed well. USP Type-II dissolving equipment was used to study medication release in simulated stomach and intestinal liquids for 24 hours. Drug release was maintained for 24 hours in formulations with increased chitosan (99.54%) and sodium alginate (98.78%) concentrations. In-vitro drug release follows first order and suggests non-fickian mechanism. Tablet formulations were stable throughout stability trials. Polymer and cross linking agents are crucial to Valsartan sustain release matrix tablet composition. Finally, the matrix tablet with increased cross linking agent concentration released drug less and polymers had comparable diffusion and erosion kinetics.

Funding
No Funding

Acknowledgement
The authors thankful to the management and Department of Pharmaceutics, Krishna Teja Pharmacy College, Chadalawada Nagar, Tirupati, Andhra Pradesh.

Conflict of Interest
Authors are declared that no conflict of interest.
Author Contribution
All authors are contributed equally

Inform Consent and Ethical Considerations
Not Required

References
30. Krishnaiah YSR, Karthikeyan RS, Satyanarayana V. A three-layer gua gum matrix tablet for oral controlled delivery of highly soluble metoprolol

